Extended Abstract

Motivation Generative modeling in machine learning is a hot topic which only in the past couple
years has seen application in offline reinforcement learning. Even more recent is the development of
the conditional flow matching technique, which offers order of magnitude computational speed up
compared to the well known diffusion technique. This paper aims to use these techniques to build
a planning agent that anticipates how much reward will be gained by visiting a sequence of states.
By explicitly modeling these rewards, this technique build upon prior flow matching planners that
require post-training tuning to achieve optimal returns. This works develops, engages, and evaluates
this technique called generative planning with reward forecasting.

Method Flow matching lays at the heart of methodology. This technique is used to generate a
sequence of states, starting with the agents current state. An inverse dynamics model then reviews the
first two states of this generated plan and answers the question: "What action is necessary to reach
the next state?"

Flow matching is used to learn a mapping from random noise to examples seen in the offline dataset.
This then allows for the agent to sample random noise at test time, and iteratively massage that noise
into a plan. Guided flow matching build upon this by adding a conditioning vector informing how
a noisy sample relates to the desired plan. The reward forecasting technique conditions on state in
order to provide smooth plans grounded in the agent’s current state.

Implementation Generative planning with reward forecasting is implemented using a 2D U-Net.
This architecture includes residual connections connecting repeated convolutional blocks, which
themselves have residual connections. Most importantly, these blocks contain dedicated multi-layer
perceptrons for interpretting where in the noise-to-plan interpolation process the current data is, and
how the conditioner impacts the flow matching process. The flow matching planner is run iteratively
in a process known as simulation to produce a plan from noise. Once the plan is produced a simple
multilayer perceptron is used to model the inverse dynamics.

Results The reward forecaster was tested against other flow matching planners utilizing alternative
conditioning schemes but only predicting sequences of states. Tests were conducted in the gymnasium
hopper environment to measure agent return within two different offline datasets. While the reward
forecaster produces visually convincing plans, the generated state sequence is out of distribution from
the environments natural dynamics. Because of this, the inverse dynamics model cannot resolve an
appropriate action for the agent, and poor performance ensues for all tested models.

Discussion This poor performance does not match literature. Even the baseline does not match the
original author’s reported values. This is likely due to differences in the flow matching architecture
used in this work and prior literature.

Conclusion While it has not been proven whether reward forecasting truly improves upon con-
ditioned state-sequence planners, future opportunity for work have been identified. Impacts on
generative architecture need to be measured in the contect of offline reinforcement learning. More
impactful would be a method for constraining the output actions of a generative planning agent.

Generative Planning: Conditioning Vs Reward
Forecasting

Jon Frydman
Department of Computer Science
Stanford University
jonfryd@stanford.edu

Abstract

This paper introduces generative planning with reward forecasting. This technique
utilizes a generative modeling framework to perform offline reinforcement learning
(RL). The resulting RL agent is capable of stitching together learned state sequences
and corresponding rewards when generating a plan. The technique is tested against
state-sequence planners implicitly conditioned by reward or otherwise. Tests show
all agents perform poorly in the hopper environment, regardless of dataset. This
likely stems from model architecture deficiencies which lead to out-of-distribution
generated state sequences.

1 Introduction

Recent advancements in offline reinforcement learning (RL) methodology include applications of
generative modeling techniques towards model-based planning. While classical planning leverages a
dynamics model to auto-regressively synthesize a sequence of states, generative planning organizes a
plan holistically. Conditional generative planning produces plans which meet arbitrary user-specified
criteria. These plans can be conditioned to maximize return. This approach avoids common place
issues in classical planning such as error compounding, where inaccuracies in the dynamics model
compound over time, and actor-critic coupling, where actors maximize the value of a Q-function,
which in-turn assesses the performance of those actions. Conditional generative planning instead
offers an error-distributed, uncoupled method for producing RL agents capable of maximizing returns
and achieving state-of-the-art (SOTA) performance.

Generative modeling often occurs with a trade off: expensive computation. Diffusion based planning
methods, often require hundreds of denoising steps in order to produce a synthetic trajectory. Guided
flow matching based planning methods offer an alternative to diffusion, achieving the same perfor-
mance with a 10x speeds up, due to more efficient probability path modeling (Zheng et al.,2023).
Flow matching in RL has not been explored much however. Questions remain on why conditioning
on suboptimal returns leads to SOTA performance. Furthermore the simulation-free training aspects
of flow matching leads to different considerations needed when plan with conditioning signals.

How can we employ flow matching based planners such that they perform inline with their guidance
objectives? This work aims to solve this question by explicitly embedding the return maximization
objective into the planning process. This idea is based in the general notion of extending model-based
RL from dynamics only to dynamics + reward prediction. A generative planning model with full
built-in world modeling capabilities contains the information needed to stitch states and reward into
a cohesive, target plan. By partially framing a plan’s accumulated reward as a goal-conditioned
in-painting problem, a generative planner can determine what states must be visited to achieve
a desired return. An input-output consistent planner based on guided flow matching allows for
a computationally practical method for offline RL that retains the high-expressive capabilities of
generative planners.

Stanford CS224R 2025 Final Report

2 Related Work

2.1 Generative Offline Reinforcement Learning

Due to the success of generative modeling in machine learning, many researchers have rushed to
apply these techniques to offline reinforcement learning. Catagories of such applications include
policy extraction, dynamics prediction, and planning techniques. Generative planning with reward
forecasting falls in the last category. The technique differs from generative policy extraction as the
actor is not coupled to a Q-function (Park et al.l 2025)(Wang et al., [2023)). Additionally dynamics
and reward modeling are learned implicitly in the planning model, as opposed to explicitly through
the use of a generative world model Ding et al.|(2024).

2.2 Generative Planning

Generative planning lies at the heart of this work. Traditional dynamics modeling planners fall within
state-space planning framework described by Sutton and Barto| (2018), whereas generative planners
fall within the plan-space optimization framework. The transformer-based Decision Transformer
(Chen et al.,[2021) is unlike the technique proposed in this paper, because this generative model
produces plans auto-regressively. Instead this proposed technique is more similar to diffusion-based
methods like Diffuser (Janner et al.,|2022) and Decision Diffuser (Ajay et al., 2023). The use of
diffusion results in a array of subtle differences from a flow matching based planner. For example,
flow matching allows for simulation-free training and the flow matching loss differs from the diffusion
reconstruction loss. Furthermore, Diffuser plans by synthesizing trajectories which include both
states and actions. Decision Diffuser only plans for states, similarly to the proposed. Continuity
of plans and current state for these two methods are achieved differently from each other and the
reward forecaster. In Diffuser, continuity arises from use of a 1D U-Net and pinning of the current
state into the plan. In Decision Diffuser the 1D U-Net is used as well as a fixed context window of
multiple states in the plan. The reward forecaster achieves continuity with the same first state pinning
as Diffuser but also conditions a 2D U-Net with the current state to ensure continuity.

Of generative planning framworks, the reward forecaster most closely resembles the guided flow
matching planner of Zheng et al.| (2023), outside the use of a 1D U-Net. The guided flow methodology,
adapts classifier-free guidance (Ho and Salimans| [2022) for flow matching. This work uses the same
technique when implementing and testing a variety of classifiers for comparative testing against the
reward forecaster.

This work also contrasts from other SOTA models like 7 [Black et al.|(2024) which integrates a flow
matching planner on top of a pre-trained vision-language model. This difference mostly stems from
the use-case. 7y aims to be a generalist multi-task RL agent, whereas the reward forecaster aims to
specialize for an individual task. Furthermore, 7y predicts action sequences compared to the reward
forecaster’s state and accumulated return sequences.

3 Method

The generative planner with reward forecasting comprises two main components: a planner 7y and
an inverse dynamics model a,. Together these blur the lines between model-based RL and policy
gradient, effectively forming a model-based policy technique. Details for both training and sampling/
acting can be found in algorithm T]and algorithm 2] respectively.

3.1 Guided Flow Matching

All generative planners tested in this work are based in conditional flow matching (Lipman et al.,
2024), which maps an arbitrary probability distribution to the distribution of a given dataset. Here, a
multivariate normal distribution is mapped to the offline RL dataset through a learned diffeomorphism,
embedded in probability-time space. A step forward in flow time indicates a partial traversal in this
probability mapping according to the learned diffeomorphism, also known as the flow. As a point of
clarity, the flow time g,y is distinct from the episode time ¢, which is considered as a component of
the probability space in the flow matching framework. Flow time ranges from zero to unity. At each
end, zg ~ N(0, I) represents a sample from noise and 1 = 71l a sample trajectory from the dataset.

Because conditional flow matching operates by interpolating individual points between the source
and target probability distributions, an interpolation scheme must be employed. This project uses
simple linear interpolation to define the interpolated point x4, ,

Loy = (1 - tﬂow)xo + tﬂowTM

dz
dtﬂow
The aim of conditional flow matching is to minimize the difference between the predicted flow

7o (Tty,,» thow) and the prescribed flow dff .

:T[i]—l‘o

Guided conditional flow matching (Zheng et al.l |2023) builds upon conditional flow matching
by incorporating classifier-free guidance (Ho and Salimans| [2022)) into the learning and sampling
processes. Guidance augments the base flow predictor such that a random sample xy accompanied
with a label 3 maps to some datapoint 7[7 associated with y. For the model 7 to incorporate guidance,
it must be capable of both unguided flow prediction, with null label (), and guided prediction, with
label y. This is accomplished by assigning a hyperparameter pynconditioned Which states the probability
of training with or without the label. Given a coin toss where £ ~ Bernoulli(pynconditioned)» the guided
conditional flow matching objective is:

dx

er (mtﬂow7 tﬂ0W7 (Z)) ~ Ttnow lff
Loorm = . .
HT 0Tty s tows Y) — G otherwise

This loss can be seen incorporated in to the training algorithm on line 16 of algorithm[I] There, the
horizon limited partial trajectories are the datapoints. Targets and flow points are formed by randomly
sampling time from a uniform distribution. The grouping of {z;, ¢ y7 7+ } form an entry in a batch
B, and the total loss is the mean loss over B.

Algorithm 1 Training the Generative Planner with Reward Forecasting
1: Given H, punconditioneds @ D,

2: Initialize 79 with (H, Weyidance) and initialize G

3: while not done do

4 for i € [0,|D]) do > Iterate over episodes
(i

5: for j € L I—‘ do > Construct horizon limited partial trajectories

6 1‘0 ~ N(0,1)

7 ~Ul0,1]

8 5 ~ Bernoulli [puncondltmned]

9 AR = Zt/ 07 j[j]f{+t/ >k € [(]’H,]_]

10: M — {oj HoG1)H AR;p.(j+1)g} > Partial trajectory with accumulated reward

11 = (1 - t)zo + t7))

12: dd””; - Tj[] — 0

13: yzojHif§:0e156(2)

14: B][-i] — {xg, t,y, d””f) > The flow matching arguments from partial trajectory j

15: end for 4

16: O 0—0B s g [Fa(2e, t,y) — 92¢)2]

17 ¢ — d) - OAE(O,U,,O’)NT [”a¢(0’ o) - a”]

18: end for

19: end while

Sampling with a guided flow matching model is equivalent to traversing the learned flow mapping
from starting noise and a given label. Analogously this can also be seen as integrating through time
on the guided flow, 7.

) (xtﬁ(,w7 tiow, y) = (1 - Wguidance)%(ztﬁnw tow, y) - wguidanCC%(Itﬁ(,W? tow, (D)
A guidance weight of wgyigance = 2 was used throughout this project.

A first-order integration step through this guided flow can be expressed as follows:

Ttgoy+rdt = Tt + AtTo(Tege s tow, Y)

Algorithm [2] shows this procedure using second-order midpoint integration steps. The process of
traversing the entire flow often through repeated forward stepping is referred to as simulation. For
notation’s sake the simulation operation is denoted as 7", where n indicates the number of integration
steps used. Because flow time and random sampling are internal to simulation, 7'9” operates only on
the reward forecasting inputs.

Algorithm 2 Acting with the Generative Planner with Reward Forecasting

Given 7y, Weuidance s Tlsteps » 005 AR gesired

1:
2 dt + 1L
Tsteps
3 xg ~ N(07 I)
4: z 4 xg
5! 20,dimo < 00 > In-paint current state
6: 20,dim AR < 0 > In-paint return-so-far
7: ZH—1,dim AR < ARgesired > In-paint desired accumulated return
8: for i € [1, ngeps| do > Solve ODE with constrained midpoint method
9: m<— z+ % ((1 — 'UJguidance)’TA'e(Z, t, 00) - wguidance'f_e(za t7 Q]))
10: 24— z+ % ((1 — wguidance)i’g(m, t+ %, 00) - wguidance'fﬁ(ma i+ %’ Q)))
11: 20,dimo < 00
12: 20,dim AR < 0
13: ZH—1,dim AR 4 ARdesired
14: end for
15: plan < (z9.gy—1,dim o)
16: return a4 (plan, plan,)

3.2 Reward Forecasting

The planning model achieves reward forecasting by predicting both state sequences and expected
future rewards. Rather than explicitly predicting rewards associated with each transition, the planner
predicts the reward plus the achieved return prior to reaching that state. This accumulated reward AR
closely resembles the finite horizon discounted return, but is limited from the starting point as well:

t+k ,

ARyppyp = Z v

t'=t
Accumulated reward therefore measures progress along a state-sequence plan and forms a well-posed
goal-conditioning objective.

Goal-conditioning is achieved through in-painting, where the starting conditions and end return of a
fixed horizon window are pinned at either end of a state + AR sequence. The guided conditional flow
model then iteratively fills in the gaps between with synthetic transitions, noted by their hat symbols.

-2 0¢ Ot+1 Ot+2 Ot+H-1 Ot+H
T Ot ARt;t H) — ~ ~ N

000 AR n) g 4R, ARprrs .. ARipno1 ARpgey
This setup allows for the reward forecaster to stitch together generated transitions that will achieve
the desired horizon limited accumulated reward AR;.; ;. During testing, the max horizon limited
return is used as the desired accumulated reward in order to maximize return, in-line with the typical
RL objective.

Baseline planning models without forecasting only generate states given the starting observation. As
such these reference models plan are not tied to return a specific desired return.

3.3 State Conditioning and More

State conditioning is a vital aspect in the generative planning process. Without it, generated synthetic
trajectories do not naturally include the current state of the agent. Even with the current state
iteratively assigned to the start of the plan (line 11 in algorithm[I)), a natural discontinuity occurs,
where the agent expects to be in a very different state. In order to ensure plans are grounded in reality,
the current state is also used as the guidance signal during the simulation process. This conditioning
allows for smooth plans starting with the agent’s current state.

As shown in|Zheng et al|(2023), a flow matching planner, conditioned on state and return can achieve
SOTA performance, however the specifics of that conditioning are unclear. This work uses two
alternative formulations state + return as relative baselines. In the former, the state and return are
concatenated to form a single conditioning signal. In the latter, the states and return are treated as
separate signals, with both being assigned the null conditioner during training depending on coin toss
&. The difference between these two stems from the assignment of a multi-layer perceptron (MLP)
for interpreting each conditioning signal in the planner’s internal architecture. With two signals, two
MLPs are used in the latter.

A third form was also initially tested. Here two separate conditioners were used with only the return
conditioning was affected by £. The resulting plans were highly chaotic in nature however, and
this was not pursued further. As a opportunity for future research, it may be worthwhile to explore
multi-conditioner guidance where £ is drawn from a multinomial distribution instead of a Bernoulli
distribution.

3.4 Inverse Dynamics

An inverse dynamics model, a4, determines which action leads from one state to a subsequent
state. As such it fits perfectly into the generative planning framework, using the first two states of
the planner’s output as input. The inverse dynamics model is instantiated as a simple two-layer,
feed-forward MLP with no output activation function. It is trained to minimize the mean square error
in predicted action and actual in each episode as shown in line 17 of algorithm [}

3.5 Model Architecture

The generative planner is comprised of a U-Net operating 2D convolutions over both episode time
and observation + reward dimensions. This architecture resembles the classical image-resolving
2D U-Net (Ronneberger et al.,2015), but also includes embeddings for both guidance conditioners
and tgow. Residual-Convolutional-Conditioning (RCC) and Residual-DeConvolutional-Conditioning
(RDCC) blocks repeatedly process the random noise sample, the conditioning signal, and time signal
into a synthetic plan trajectory. Figure[I]depicts the flow of information throughout these network
blocks. Refer to figure 2] for a look inside the RCC block. Conditioning is accomplished by runnining
the signal through dedicated MLPs, separate for each block, and multiplying the MLP output to
the prior convolutional output. In cases where no conditioning is used (y = (J), this multiplication
is skipped. The time signal also has a dedicated MLP within each block, additively contributing
the convolutional result. The RDCC block is composed of the same process as the RCC block, but
instead using deconvolution operations.

4 Experimental Setup

To test the reward forecasting generative planner, comparative models were setup with the alternative
state+return conditioning signals mentioned in section [3.3] Baselines with no-conditioning and just
state conditioning were trained and evaluated as well. All return conditioning signals matched the
maximum horizon limited return for a particular dataset. Models were tested in both the Hopper and
Walker2D gymnasium environments (Towers et al.,|2024). The Hopper environment was tested with
two offline datasets: medium-v(and the medium-expert-v0. The Walker2D environment was trained
using only the corresponding medium-v0 dataset (Younis et al.,2024). These datasets are composed
of post-training trajectories from a reference policy.

Random Sample from Normal Conditioned Spatial Temporal U-Net Generated Plan

Shape of (Horizon x State Length)
LAMLI)A wee

RCC Block
J.).)))J./\/,)\)J// (Uftor =02
Agent’s Current State
| segrce

RDCC Block

MaxPool

RCC Block

i Regenerate
LI e

Deconvolution
Inverse

RDCC Block
MaxPool I Deconvolution
RCC Block RDCC Block
(MLP)

FlowTime tyypy = 0 ————O e} o e} o} 8] Dynamics at

Figure 1: High level process of generating an action using the U-Net architecture used for all
generative planners in this project.

Condition Flow
Vector Time

Figure 2: How conditioning and time signals are processed within an individual Residual-
Convolutional-Conditioning block.

To judge the efficacy of the generated planners, the mean episode return over 10 trial episodes are
reported as a ratio to the maximum return in the dataset. The mean performance of the dataset’s
policy is also reported as a reference baseline.

All models were trained over 2.3 million gradient steps, equating to 1800 epochs in the medium-v0
dataset and 950 epochs in the medium-expert-v0 dataset. All reported values reflect the models after
training was complete.

5 Results

5.1 Quantitative Evaluation

Overall none of the flow matching agents performed as anticipated. All agents performed well below
the reference agent’s performance, and none came near literature’s SOTA performance, which exceeds
the reference policy return. Table[5.1]shows this poor performance for the hopper environment. Note
that the standard deviations in performance are comparable to the mean returns themselves, indicating
that there is high uncertainty in the reported values. The outset hypothesis, which states reward
forecasting improves upon reward conditioning, is therefore neither proven nor disproven, as the
relative baseline results are unclear.

How does this poor performance manifest? As shown in the video referenced in figure] the state
conditioning and reward forecasting planners produce smooth, convincing plans, grounded in the

Method Dataset
medium-v0 | medium-expert-v0
Dataset Reference Policy | 72.1+£224 | 751+214
No Conditioning 7.8 £3.6 21+141
State Conditioning 4.6 £10.2 7.8 £35
Concatenated State + Reward Conditioning | 5.8 5.8 52+£26
Independent State + Reward Conditioning 0.6 £ 0.3 1.7+ 1.3
Reward Forecasting + State Conditioning 85+59 -0.7+04

Table 1: Percent return achieved in the Hopper environment compared to the maximum episode
return of the offline dataset. Values are accompanied by standard deviations over ten evaluation
episodes. 20 flow steps were used to generate a plan at each time step.

agent’s current state. With quality plans, poor performance is surprising. The issue likely lies in a
subtle detail of training algorithm [T}

Despite achieving low average training losses, as shown in figure[3] the inverse dynamics model is
not well suited to predict which actions connect the states generated by the planner. The inverse
dynamics model is trained on real trajectory information but is then asked to predict synthetic data. If
the first two states of a generated plan do not resemble the transitions seen in the dataset, expect a
nonsense action be produced by the agent.

Env: hopper/medium-expert-v0 Exp: 2025-06-01_21-41-16

Mean Flow Loss

6x 107!

Planning Loss

4x107?

3x10°!

o] 200 400 600 800 1000

—— Inverse Dynamics Loss

10-2 4

Inverse Dynamics Loss

o] 200 400 600 800 1000

500 1 —— Conditioned Return

Unconditioned Return
400 +
300 4

1 DN NAS /\L/\/\ L/\J/\uf\l 5

o] 200 400 600 800 1000
Epoch

Test Returns

Figure 3: Loss dashboard of the reward forecaster in the medium-expert-v0O hopper environment.
The losses shown here are very similar for all other generative planners. Note that returns of 500
equate to 12% performance.

So do all the trained planners produce nonsense actions? Table[5.I|answers this question prescriptively.
The euclidean distance between adjacent states are measured and presented. If the generated plans are
realistic, they should have the same state transitions as the dataset. The table also shows the euclidean
difference in the dataset’s actions and each agents actions. While an ideal agent should have some
deviation to mark improvement over the reference actor, it worth noting a perfect behavior cloning
agent will have zero action deviation.

Method | State Transition L2 | State Transition Max | Action Deviation L2 | Action Deviation Max
Dataset \ 1.5 \ 7.7 \ 0 \ 0
No Conditioning 5.7 15.3 11.6 134
State Conditioning 1.9 13.7 1.5 42.7
Concatenated State + Reward Conditioning 2.2 6.5 2.2 81.7
Independent State + Reward Conditioning 2.6 9.7 34 117
Reward Forecasting + State Conditioning 1.9 19.9 1.6 98.1

Table 2: Diagnostic metrics showing how far the generated plan for each model deviated from the
support of the dataset. Metrics are averaged over 50,000 Monte Carlo samples of transitions in the
Hopper medium-expert-v0 dataset.

The diagnostic table shows that all generative planning agents, on average, produce adjacent states
with distances further apart then the real transitions. This discrepancy leads to out of distribution data
for the inverse dynamics model, which then produces nonsense actions. Inappropriate actions leads
to further out of distribution states and then quick episode termination.

5.2 Qualitative Analysis

Not all generative planners achieved the same level of synthesis quality. The state conditioned planner
and the reward forecaster both produce convincing plans, while the reward+state conditioned planners
output chaotic plans. The video referenced in figure [] contrasts each agent’s plan. A reference
trajectory from the dataset is included for comparison.

Data Set Episode No Conditioning State Conditioning
Sample 2

State+Reward Single Conditioning State+Reward Multiple Conditioning Reward Forecasting

Figure 4: Comparison of initial plans generated by each planning model trained with the hopper
medium-expert-v0 dataset. Top left includes a clip of the reference actor for comparison. To see the
whole video, visit https://youtu.be/MeWz1-mFVx4

There are a few unrealistic aspect to even the quality plans. Note how, in the video, the state
conditioned and reward forecasting agents initiate a plan with a heel strike that leaves the agent
hovering. The reference video shows the same action but the agent is in contact with the ground the

https://youtu.be/MeWz1-mFVx4
https://youtu.be/MeWz1-mFVx4

whole time. As such the agent’s plan is more akin to a hyperactive imagination, that produces subtly
unrealistic trajectories.

This lack of realism can also be seen in the walker2d environment. Here the tested agents perform a
few highly unrealistic motions like foot slides, which the environment’s friction does not allow. For
this reason, combined with higher computational expense, the walker2d tests were discontinued to
focus on diagnostics with the hopper environment.

DODRRAAA LA

Figure 5: Frame-by-frame of the reward forecaster plan in the walker2d environment. Every tenth
frame of the 128 frame plan is shown.

6 Discussion

All generative planners failed to produce synthetic trajectories similar enough to the dataset for the
inverse dynamics models to produce sensible actions. This is hinted at in the flow planning losses
achieving only a loss of >0.2, where ideally a loss of < 0.1 would be realized. While many trajectories
seem superficially realistic, the dilated distance between generated states indicate poor prediction.

Unmentioned in the preceding text, were the attempts to rectify this problem. One major hurdle was
the difference in generative architecture from literature. While all results and experiments were shown
with the 2D U-Net, additional experiments were run with a 1D U-Net. This more closely matches the
architecture in Diffuser and Decision Diffuser, limiting the chances for mistakes. Despite bridging
the gap, poor performance was still realized. Differences in architecture were still present. For
example, this project uses a simple MLP to learn a flow time embedding, where as the Diffuser uses a
sinusoidal transformation + MLP to condition flow time. These types of difference in architecture
likely play a large role in performance difference between this project and literature.

7 Conclusion

Reward forecasting has not yet been proven to achieve improved consistency over return+state
conditioning. The generative planners trained in this work did not produce synthetic trajectories
compatible with their corresponding inverse dynamics models. All models performed poorly and
chaotically, leaving the hypothesis open ended.

This shows the challenge in producing generative RL agents. Future work includes closer adherence
to literature’s generative model architecture. More promisingly however, would be improvements
in the robustness of the inverse dynamics model. Perhaps constraints could be applied such that
the inverse dynamics model does not produce out of distribution actions. A holistic approach to
robustness allows for more flexibility and deeper interpretation of the model’s generated plans.

8 Team Contributions

* Group Member 1: Just one team member here! All work and effort was done by myself.
Special thanks to Xingze Dai for helping guide my project and let me bounce ideas.

References

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. 2023.
Is Conditional Generative Modeling all you need for Decision-Making? arXiv:2211.15657 [cs.LG]
https://arxiv.org/abs/2211.15657

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming
Ke, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang
Shi, James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. 2024. mg:
A Vision-Language-Action Flow Model for General Robot Control. arXiv:2410.24164 [cs.LG]
https://arxiv.org/abs/2410.24164

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. 2021. Decision Transformer: Reinforcement Learning via
Sequence Modeling. arXiv:2106.01345 [cs.LG] https://arxiv.org/abs/2106.01345

Zihan Ding, Amy Zhang, Yuandong Tian, and Qinqing Zheng. 2024. Diffusion World
Model: Future Modeling Beyond Step-by-Step Rollout for Offline Reinforcement Learning.
arXiv:2402.03570 [cs.LG] https://arxiv.org/abs/2402.03570

Jonathan Ho and Tim Salimans. 2022. Classifier-Free Diffusion Guidance. arXiv:2207.12598 [cs.LG]
https://arxiv.org/abs/2207.12598

Michael Janner, Yilun Du, Joshua B. Tenenbaum, and Sergey Levine. 2022. Planning with Diffusion
for Flexible Behavior Synthesis. arXiv:2205.09991 [cs.LG] https://arxiv.org/abs/2205.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky T. Q.
Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. 2024. Flow Matching Guide and Code.
arXiv:2412.06264 [cs.LG] https://arxiv.org/abs/2412.06264

Seohong Park, Qiyang Li, and Sergey Levine. 2025. Flow Q-Learning. arXiv:2502.02538 [cs.LG]
https://arxiv.org/abs/2502.02538

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional Networks for
Biomedical Image Segmentation. arXiv:1505.04597 [cs.CV] https://arxiv.org/abs/1505,

04597

Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulao, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. 2024. Gymnasium: A
Standard Interface for Reinforcement Learning Environments. arXiv preprint arXiv:2407.17032
(2024).

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. 2023. Diffusion Policies as an Expressive
Policy Class for Offline Reinforcement Learning. arXiv:2208.06193 [cs.LG] https://arxiv.
org/abs/2208.06193

Omar G. Younis, Rodrigo Perez-Vicente, John U. Balis, Will Dudley, Alex Davey, and Jordan K
Terry. 2024. Minari. doi:10.5281/zenodo. 13767625

Qinging Zheng, Matt Le, Neta Shaul, Yaron Lipman, Aditya Grover, and Ricky T. Q. Chen. 2023.
Guided Flows for Generative Modeling and Decision Making. arXiv:2311.13443 [cs.LG] https:
//arxiv.org/abs/2311.13443

10

https://arxiv.org/abs/2211.15657
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2106.01345
https://arxiv.org/abs/2402.03570
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2205.09991
https://arxiv.org/abs/2205.09991
https://arxiv.org/abs/2412.06264
https://arxiv.org/abs/2502.02538
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/2208.06193
https://arxiv.org/abs/2208.06193
https://doi.org/10.5281/zenodo.13767625
https://arxiv.org/abs/2311.13443
https://arxiv.org/abs/2311.13443

	Introduction
	Related Work
	Generative Offline Reinforcement Learning
	Generative Planning

	Method
	Guided Flow Matching
	Reward Forecasting
	State Conditioning and More
	Inverse Dynamics
	Model Architecture

	Experimental Setup
	Results
	Quantitative Evaluation
	Qualitative Analysis

	Discussion
	Conclusion
	Team Contributions

